Bellwork
02/21/2012
Multiply the matrices.
1.

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & -2 & 3
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
-4 & 2 \\
-3 & 1
\end{array}\right]} \\
\begin{array}{ll}
1(0)+-2(-4)+3(-3) & \begin{array}{l}
1(-1)+-2(2)+ \\
-1+-4+33(1)
\end{array} \\
0+8+-9 & \\
{[-1} & -2]
\end{array}
\end{gathered}
$$

Lesson 9.1

Use the translation $(x, y) \rightarrow(x+6, y-3)$.

1. What is the image of $B(-4,1)$?

$$
B^{\prime}(-4+6,1-3) \quad B^{\prime}(2,-2)
$$

2. What is the preimage of $C^{\prime}(2,-7)$? $(x-6, y+3)$

$$
C(2-6,-7+3) \quad C(-4,-4)
$$

$A^{\prime} B^{\prime} C$ is the image of $A B C$ after a translation. Write a rule for the translation. Then verify that the translation is an isometry.

$$
\begin{gathered}
(x, y) \rightarrow \\
(x-5, y+3)
\end{gathered}
$$

Name the vector and write its component form.

$$
\begin{aligned}
& \overrightarrow{\mathrm{DR}} \\
& \langle-7,-3\rangle
\end{aligned}
$$

The vertices of $A B C$ are $A(1,2), B(2,6)$, and $C(3,1)$. Translate $A B C$ using the given vector. Graph $A B C$ and its image.
$<8,2>$

Lesson 9.2
6. $\left[\begin{array}{rr}-1 & -9 \\ 0 & 2\end{array}\right]+\left[\begin{array}{ll}-5 & -9 \\ +6 & +7\end{array}\right]$
7. $\left[\begin{array}{rr}5 & -2 \\ 2 & 4 \\ -7 & 2\end{array}\right]+\left[\begin{array}{rr}1 & 3 \\ 6 & -4 \\ 6 & -1\end{array}\right]$
$\left[\begin{array}{cc}-6 & -18 \\ 6 & 9\end{array}\right]$

$$
\left[\begin{array}{rr}
6 & 1 \\
8 & 0 \\
-1 & 1
\end{array}\right]
$$

13.

$$
\left[\begin{array}{lll}
-3 & 2 & 6
\end{array}\right]\left[\begin{array}{r}
-5 \\
0 \\
-3
\end{array}\right]|x|
$$

14. $\left[\begin{array}{lll}2 & 5 & 5 \\ 1 & 0 & 3\end{array}\right]\left[\begin{array}{r}0 \\ -4 \\ 2\end{array}\right]$

$$
\begin{gathered}
0+-20+10 \\
2(0)+5(-4)+5(2) \\
0+0+6 \\
1(0)+0(-4)+3(2) \\
{\left[\begin{array}{c}
-10 \\
6
\end{array}\right]}
\end{gathered}
$$

Homework Assignment

Pg. 912 \#1-11 Pg. 585 \#18-23

Quest 9.1-9.2 Tomorrow!

