Bellwork 01/06/2012

Decide whether the numbers can represent the sides lengths of a triangle. If yes, then classify the triangle as acute, right, or obtuse.

1. 10, 12, 30
2. $18,34,45$

Name

\qquad

Date

\qquad

LESSON 7.1

Practice B

For use with pages 432-439
Use $\triangle A B C$ to determine if the equation is true or false.

1. $b^{2}+a^{2}=c^{2}$
2. $c^{2}-a^{2}=b^{2}$
3. $c^{2}=b^{2}+a^{2}$
(4.) $a^{2}=c^{2}-b^{2}$

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
-b^{2}-b^{2} \\
a^{2}=c^{2}-b^{2}
\end{gathered}
$$

Find the unknown side length. Simplify answers that are radicals. Tell whether the side lengths form a Pythagorean triple.
5.

(6.)

$x^{2}=b^{2}+5^{2}$
$x^{2}=36+25$
$\sqrt{x^{2}}=\sqrt{61}$

8.

The given lengths are two sides of a right triangle. All three side lengths of the triangle are integers and together form a Pythagorean triple. Find the length of the third side and tell whether it is a leg or the hypotenuse.
9. 40 and 41
10. 12 and 35
11. 48 and 55
12. 65 and 72

Find the area of a right triangle with given leg l and hypotenuse \boldsymbol{h}. Round decimal answers to the nearest tenth.
13. $l=21 \mathrm{in}$., $h=29 \mathrm{in}$.
14. $l=13 \mathrm{~cm}, h=17 \mathrm{~cm}$

Find the area of the figure. Round decimal answers to the nearest tenth. 15.

$154, w^{2}$

$$
A=217 \mathrm{in}^{2}
$$

$60+60+96+96$
$32 \mathrm{ft}^{2}$

Graph points A, B, and C. Connect the points to form $\triangle A B C$. Decide whether $\triangle A B C$ is right, acute, or obtuse.
10. $A(4,1), B(7,-2), C(2,-4)$

11. $A(-2,2), B(6,4), C(-4,10)$

12. $A(0,5), B(3,6), C(5,1)$

	y						
-1							
+							
	1					x	

The roof shown in the diagram at the right is shown from the front of the house. The slope of the roof is $\frac{5}{12}$. The height of the roof is 15 ft (Note: Remember slope $=\frac{\text { rise }}{\text { run }}$). Hint: Find the base in order to find the hypotenuse!
13. What is the length from gutter to peak of the roof?

