No Bellwork 04/18/12

Geometry
 Review 11.4

Vocabulary:

Arc Length: A portion of the circumference of a circle.
Note: the measure of the arc (in degrees) can be used to find the length (in units).

Circumference: The distance around a circle.
Note: We no longer use 3.14 as Pi. You will use the π button on your calculator.

THEOREM

For Your Notebook

Theorem 11.8 Circumference of a Circle

The circumference C of a circle is $C=\pi d$ or $C=2 \pi r$, where d is the diameter of the circle and r is the radius of the circle.

Justification: Ex. 2, p. 769

$C=\pi d=2 \pi r$

COROLLARY

For Your Notebook

Arc Length Corollary

In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360°.

$\frac{\text { Arc length of } \overparen{A B}}{2 \pi r}=\frac{m \overparen{A B}}{360^{\circ}}$, or Arc length of $\overparen{A B}=\frac{m \overparen{A B}}{360^{\circ}} \cdot 2 \pi r$

Find and Use Arc Length
Find length $\widehat{A B}$.
Find r.

$$
C=d \pi
$$

$$
\begin{aligned}
& \overparen{A B}=\frac{45}{360} \cdot \frac{8 \pi}{1} \\
& \overparen{A B}=\frac{360 \pi}{360} \\
& \widehat{A B}=\pi
\end{aligned}
$$

$C=8 \pi$

$$
\begin{gathered}
38.95=\frac{260}{360} \cdot 2 \pi r \\
38.95=\frac{520 \pi}{360} \cdot r \cdot \frac{340}{522 \pi} \\
r=38.95 \cdot \frac{360}{520 \pi} \\
r=\frac{14,022}{520 \pi} \\
r=\frac{7011}{260 \pi} \\
r=8.583 \ldots \\
r=8.6
\end{gathered}
$$

Find Perimeter
Find the perimeter of the region.

The diameter of a bicycle tire is 30 in . To the nearest ft., how far does the tire travel when it makes 100 revolutions?

Homework Assignment

Worksheet 11.4B

