Bellwork 03/02/2012

How many lines of symmetry does each figure have?

1. Equilateral triangle

3

Does the figure have rotational symmetry? If so, describe the rotations that map the figure onto itself.
2.

$$
72^{\circ}, 144^{\circ}
$$

Geometry
9.7 Identify and Perform Dilation Standard(s): 3, 10

Vocabulary:
Scalar Multiplication: The process of multiplying each element of a matrix by a real number or scalar.

Note: You can use scalar multiplication to represent a dilation centered at the origin in the coordinate plane.

Dilation
enlargement \rightarrow factor >1
reduction \rightarrow factor <1
Scale factor:
final
original

Identifying Dilations
Find the scale factor. Tell whether the dilation is reduction or enlargement. Find the value of x.

Scalar Multiplication

Simplify the product.

$$
\begin{aligned}
& 2\left[\begin{array}{ccc}
-4 & 3 & -2 \\
1 & 7 & 0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-8 & 6 & -4 \\
2 & 14 & 0
\end{array}\right]}
\end{aligned}
$$

$$
\frac{2}{3}\left[\begin{array}{ccc}
6 & -9 & 0 \\
12 & 4.5 & -6
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
4 & -6 & 0 \\
8 & 3 & -4
\end{array}\right]
$$

Dilation with Matrices

Find the image matrix that represents a dilation of the polygon centered at the origin with the given scale factor.
Then graph the polygon and its image.

$$
\begin{aligned}
& \text { A B C D } \\
& {\left[\begin{array}{rrrr}
-3 & -2 & 0 & 3 \\
-2 & 1 & 3 & 4
\end{array}\right] ; \mathrm{k}=2} \\
& A^{\prime} B^{\prime} C^{\prime} D^{\prime} \\
& {\left[\begin{array}{cccc}
-6 & -4 & 0 & 6 \\
-4 & 2 & 6 & 8
\end{array}\right]}
\end{aligned}
$$

$$
\left.\begin{array}{ccc}
G & H & J \\
-2 & 0 & 6 \\
-4 & 2 & -2
\end{array}\right] ; \mathrm{k}=\frac{1}{2}
$$

Compositions with Dilation
The vertices of $\triangle \mathrm{ABC}$ are $A(1,2), B(5,4)$, and $C(7,1)$. Graph the image of the triangle after a composition of the transformations in the order they are listed.

Translation: $(x, y) \rightarrow(x-7, y)$
Dilation: centered at the origin with a scale factor of 2

$$
\begin{array}{ll}
A^{\prime}(-6,2) & A^{\prime \prime}(-12,4) \\
B^{\prime}(-2,4) & B^{\prime \prime}(-4,8) \\
C^{\prime}(0,1) & C^{\prime \prime}(0,2)
\end{array}
$$

$A(1,2), B(5,4)$, and $C(7,1)$
Dilation: centered at the origin with a scale factor of $\frac{1}{2}$
Reflection: in the x-axis

$$
\begin{array}{ll}
A^{\prime}\left(\frac{1}{2}, 1\right) & A^{\prime \prime}\left(\frac{1}{2},-1\right) \\
B^{\prime}\left(\frac{5}{2}, 2\right) & B^{\prime \prime}\left(\frac{5}{2},-2\right) \\
C^{\prime}\left(\frac{7}{2}, \frac{1}{2}\right) & C^{\prime \prime}\left(\frac{7}{2},-\frac{1}{2}\right)
\end{array}
$$

Homework Assignment

Worksheet 9.7B

