Bellwork 02/28/2012

Use the quad. HIJK with vertices $H(3,0), I(1,-4), J$ ($0,-4$), $K(-1,-3)$.

1. Find the coordinates of the image of HIJK for a rotation of 180° about the origin.

$$
H^{\prime}(-3,0)
$$

$$
I^{\prime}(-1,4)
$$

J' $(0,4)$

$$
K^{\prime}(1,3)
$$

Geometry
9.5 Apply Compositions of Transformations Standard(s): 9, 10

Vocabulary:

Glide Reflection: A transformation in which every point P is mapped to a point $P^{\prime \prime}$ by 1) A translation maps P to P^{\prime} and 2) A reflection in a line k parallel to the direction of the translation maps P^{\prime} to $P^{\prime \prime}$.

Composition of Transformations: When 2 or more transformations are combined to form a single transformation.

THEOREM

For Your Notebook

THEOREM 9.4 Composition Theorem

The composition of two (or more) isometries is an isometry.
Proof: Exs. 35-36, p. 614

THEOREM

For Your Notebook

THEOREM 9.5 Reflections in Parallel Lines Theorem

If lines k and m are parallel, then a reflection in line k followed by a reflection in line m is the same as a translation.

If $P^{\prime \prime}$ is the image of P, then:

1. $\overline{P P^{\prime \prime}}$ is perpendicular to k and m, and
2. $P P^{\prime \prime}=2 d$, where d is the distance between k and m.

Proof: Ex. 37, p. 614

THEOREM

For Your Notebook
Theorem 9.6 Reflections in Intersecting Lines Theorem
If lines k and m intersect at point P, then a reflection in k followed by a reflection in m is the same as a rotation about point P.

The angle of rotation is $2 x^{\circ}$, where x° is the measure of the acute or right angle formed by k and m.

$m \angle B P B^{\prime \prime}=2 x^{\circ}$

Find the Image of a Glide Reflection

The vertices of $\triangle \mathrm{PQR}$ are $P(2,6), Q(4,-2)$, and $R(-3,-3)$. Find the image of $\triangle P Q R$ after the glide reflection.
I. Translation: $(x, y) \rightarrow(x+4, y)$
2. Reflection: in the x-axis

$$
\text { i. } \begin{array}{ll}
P^{\prime}(6,6) & \text { a. } P^{\prime \prime}(6,-6) \\
Q^{\prime}(8,-2) & Q^{\prime \prime}(8,2) \\
R^{\prime}(1,-3) & R^{\prime \prime}(1,3)
\end{array}
$$

The vertices of $\triangle \mathrm{ABC}$ are $A(2,4), B(7,6)$, and $C(5,2)$. Graph the image of $\triangle \mathrm{ABC}$ after a composition of the transformations in the order they are listed.

Translation: $(x, y) \rightarrow(x-2, y)$
Reflection: 90° about the origin

Describe a Transformation

Describe the composition of transformations.

Rotation 90°
Reflection x-ards

Reflections in Parallel Lines

In the diagram, r||s, $\overline{\mathrm{CD}}$ is reflected in line r, and $\overline{\mathrm{C}^{\prime}} \mathbf{D}$ ' is reflected in line S.
A translation maps $\overline{\mathrm{CD}}$ onto which segment?
Which lines are perpendicular to $\overline{\mathrm{DD}}$ $r+S$
Name two segments parallel to $\overline{C C} "$

If the distance between r and s is $\mathbf{2}$ inches, what is the length of $\overline{C C "} ? ~ 2(2)=4 \mathrm{in}$.

Is the distance from C ' to s the same as the distance from C " to s ? Explain.
yes,
def.
of
reflection

Angle of Rotation

Find the angle of rotation that maps T onto $T^{\prime \prime}$.
$75(2)=$
150°
$101(2)=$
202°

Homework Assignment

Worksheet 9.5B

