Bellwork 02/15/2012

1. Name the vector and write it in component form.

$\overrightarrow{C D}$

$$
\langle 4,6\rangle
$$

2. Use the point $M(8,-2)$. Find the component form of the vector that describes the translation to $M^{\prime}(7,5)$.

$$
\begin{gathered}
M^{\prime} \underbrace{(7-8,5), M(8,-2)} \\
\langle-1,7\rangle
\end{gathered}
$$

Geometry
 9.2 Use Properties of Matrices
 Standard(s): 9, 10

Vocabulary:

Matrix: A rectangular arrangement of numbers in rows and columns.

$$
\left[\begin{array}{ccc}
2 & 6 & -8 \\
1 & 0 & 4
\end{array}\right]
$$

Element: Each number in a matrix.

Dimensions: The numbers of rows by the columns.

$$
\begin{aligned}
& r \times c \\
& 2 \times 3
\end{aligned}
$$

$$
\left[\begin{array}{lll}
2 & 6 & -8 \\
1 & 0 & 4
\end{array}\right]
$$

To Add or Subtract Matrices:
Add or subtract corresponding elements.
Note: The matrices must have the same dimensions.

To Multiply Matrices:
Multiply the rows of the first matrix times the columns of the second matrix
Note: The matrices don't have to have the same dimensions.

The Multiplication Check

The Basics of Matrices

Find the dimensions of the matrices. Tell which matrices could be added together.
$\left[\begin{array}{rrr}9 & -1 & 0 \\ 3 & 4 & -2 \\ -2 & 6 & -7\end{array}\right]$
$\left[\begin{array}{rr}9 & -1 \\ 3 & 4 \\ -2 & 6\end{array}\right]$
[0]
$\mid \times 1$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
3×3
3×2
2×2

Matrices can be created using any set of data!
For example, I can create a matrix using 3 students and their past two test grades!

	Test \#1	Test \#2
Student 1	98	76
Student 2	53	68
Student 3	74	81

$\left[\begin{array}{ll}98 & 76 \\ 53 & 68 \\ 74 & 81\end{array}\right]$
or you could write it like this...

	Student 1	Student 2	Student 3
Test \#1	98	53	74
Test \#2	76	68	81

$\left[\begin{array}{lll}98 & 53 & 74 \\ 76 & 68 & 81\end{array}\right]$

Writing Matrices
Use the diagram to write a matrix to represent the polygon.

Quadrilateral ACDE

$$
\left[\begin{array}{llll}
A & C & D & E \\
1 & 6 & 5 & 2 \\
3 & 3 & 1 & 1
\end{array}\right]
$$

Add or Subtract Matrices
Add or subtract.

$$
\begin{aligned}
& \begin{array}{c}
1 \times 2 \quad 1 \times 2 \\
{\left[\begin{array}{ll}
-3 & 7
\end{array}\right]+\left[\begin{array}{ll}
2 & -5
\end{array}\right]}
\end{array} \\
& -3+2 \quad 7+-5 \\
& {\left[\begin{array}{ll}
-1 & 2
\end{array}\right]} \\
& 2 \times 2 \quad 2 \times 2 \\
& \begin{array}{l}
{\left[\begin{array}{ll}
1 & -4 \\
3 & -5
\end{array}\right]+\left[\begin{array}{ll}
-2 & -3 \\
7 & -8
\end{array}\right]} \\
{\left[\begin{array}{ll}
-1 & -7 \\
-4 & -13
\end{array}\right]}
\end{array} \\
& 2 \times 2 \quad 2 \times 2 \\
& {\left[\begin{array}{ll}
7 & 2 \\
-5 & 9
\end{array}\right]+\left[\begin{array}{ll}
-8 & 1 \\
4 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc}
-1 & 3 \\
-1 & 9
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
2 & 3 & 5 \\
7 & -1 & 8
\end{array}\right]+\left[\begin{array}{rrr}
-12 & +2 & -1 \\
-6 & -3 & +4
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-10 & 5 & 4 \\
1 & -4 & 12
\end{array}\right]}
\end{aligned}
$$

Represent a Translation Using Matrices
Find the image matrix that represents the translation of the polygon. Then graph the polygon and its image.

2 units right, 2 units up $(x, y) \rightarrow(x+2, y+2)$

$$
\left[\begin{array}{ccc}
A^{\prime} & B^{\prime} & C^{\prime}+2+2 \\
-2+2 & 0+2 & 1+2 \\
1+2 & 4+2 & -3+2
\end{array}\right]\left[\begin{array}{ccc}
A^{\prime} & B^{\prime} & C^{\prime} \\
0 & 2 & 3 \\
3 & 6 & -1
\end{array}\right]
$$

$$
\begin{aligned}
& A^{\prime}(0,3) \\
& B^{\prime}(2,6) \\
& C^{\prime}(3,-1)
\end{aligned}
$$

2 units down

$$
\left[\begin{array}{ccc}
D & E & F \\
2 & 5 & 4 \\
3 & 1 & 4
\end{array}\right]
$$

Homework Assignment

Pg. 584 \#1, 3-17

Multiplying Matrices

Use the multiplication check to find the products dimension. Then multiply.

$$
\left[\begin{array}{rr}
3 & -5 \\
1 & 4
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
0 & 6
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
5 & 1
\end{array}\right]\left[\begin{array}{c}
-3 \\
-2
\end{array}\right]
$$

$$
\left[\begin{array}{rr}
5 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & -4 \\
5 & 1
\end{array}\right]
$$

Use Matrices in Real-World

Jenny and Arthur are going to the store to buy tomatoes, peppers, and cucumbers. If a tomato costs $\$.89$, a pepper $\$.59$, and a cucumber $\$.45$, use matrix multiplication to find the total amount each person spent.

Jenny	Arthur
3 Tomatoes	7 Tomatoes
2 peppers	4 peppers
4 cucumbers	2 cucumbers

$$
\left[\begin{array}{ll}
5 & 1
\end{array}\right]\left[\begin{array}{c}
-3 \\
-2
\end{array}\right]
$$

$$
\left[\begin{array}{rr}
5 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{rr}
2 & -4 \\
5 & 1
\end{array}\right]
$$

Homework Assignment

Worksheet 9.2B

