## Bellwork <br> 01/31/2012

Name each type of quadrilateral-parallelogram, rectangle, rhombus, and square-for which the statement is true.

1. Both pairs of opposite angles are congruent.
$\square$ rectangle,
rhombus, square
2. The quadrilateral is equilateral.

Rhombus,
Square

Geometry
8.5 Use Properties of Trapezoids and Kites Standard(s): 3, 4

## Vocabulary:

Trapezoid: A quadrilateral with exactly one pair of parallel sides.

Bases: The parallel sides of the trapezoid.

Legs: The nonparallel sides of a trapezoid.

Isosceles Trapezoid: A trapezoid with congruent legs.

Midsegment of a Trapezoid: A segment that connects the midpoint of its legs.

Kite: A quadrilateral that has 2 pairs of consecutive congruent sides, but opposite sides are not congruent.

| THEOREMS | For Your Notebook |
| :---: | :---: |
| Theorem 8.14 |  |
| If a trapezoid is isosceles, then each pair of base angles is congruent. |  |
| If trapezoid $A B C D$ is isosceles, then $\angle A \cong \angle D$ and $\angle B \cong \angle C$. <br> Proof: Ex. 37, p. 548 |  |
| Theorem 8.15 |  |
| If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid. |  |
| If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$ ), then trapezoid $A B C D$ is isosceles. <br> Proof: Ex. 38, p. 548 |  |
| Theorem 8.16 |  |
| A trapezoid is isosceles if and only if its diagonals are congruent. |  |
| Trapezoid $A B C D$ is isosceles if and only if $\overline{A C} \cong \overline{B D}$. <br> Proof: Exs. 39 and 43, p. 549 |  |
| THEOREM | For Your Notebook |
| Theorem 8.17 Midsegment Theorem for Trapezoids |  |
| The midsegment of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases. <br> If $\overline{M N}$ is the midsegment of trapezoid $A B C D$, then $\overline{M N}\\|\overline{A B}, \overline{M N}\\| \overline{D C}$, and $M N=\frac{1}{2}(A B+C D)$. <br> Justification: Ex. 40, p. 549 Proof: p. 937 | , then |
| THEOREMS | For Your Notebook |
| Theorem 8.18 |  |
| If a quadrilateral is a kite, then its diagonals are perpendicular. <br> If quadrilateral $A B C D$ is a kite, then $\overline{A C} \perp \overline{B D}$. Proof: Ex. 41, p. 549 | s are |
| If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent. |  |
|  |  |
| If quadrilateral $A B C D$ is a kite and $\overline{B C} \cong \overline{B A}$, then $\angle A \cong \angle C$ and $\angle B \neq \angle D$. |  |
| Proof: Ex. 42, p. 549 |  |

Use Properties of Isosceles Trap.
Find the $m \angle \mathrm{~B}, m \angle \mathrm{C}$, and $m \angle \mathrm{D}$.

$m \angle D=97^{\circ}$ $m \angle B=83^{\circ}$
$m \angle C=83^{\circ}$


Use the Midsegment of a Trap.
Find the length of midsegment $\overline{\mathrm{RT}}$.


Apply the Kite Theorems
Find the $m \angle \mathrm{~K}$ in the kite shown.


$$
\begin{gathered}
x+2(118)+74=360 \\
x+310=360 \\
x=50^{\circ} \\
m \angle k=50^{\circ}
\end{gathered}
$$

Use Theorem 8.18 and the Pythagorean Theorem to find the side lengths of the kite. Write the lengths in simplest radical form.


Use Algebra and Properties of Trap.

Find the value of $x$.


## Homework Assignment

## Worksheet 8.5B

