Bellwork 01/16/2012

Find the value of the variable.

1. Find a if $b=10 \sqrt{ } 2$. $h=l \cdot \sqrt{2}$
$\frac{10 \sqrt{2}}{\sqrt{2}}=\frac{a \cdot \sqrt{2}}{\sqrt{2}}$

$$
a=10
$$

2. Find c and d if $e=50 \sqrt{ } 3$.

$$
\begin{array}{r}
h=l_{;} 2 \longrightarrow \frac{50 \sqrt{3}}{2}=\frac{c \cdot q}{d} \\
c=25 \sqrt{3} \\
l_{l}=l_{s} \cdot \sqrt{3} \\
d=25 \sqrt{3} \cdot \sqrt{3} \\
V^{d} \\
d=75
\end{array}
$$

Geometry
 7.5 Apply the Tangent Ratio Standards): 2, 4

Vocabulary:

Trigonometric Ratio: A ratio of the lengths of two sides in a right triangle.

Tangent: The ratio of the legs in a right triangle constant for a given angle measure.

KEY CONCEPT
 For Your Notebook

Tangent Ratio
Let $\triangle A B C$ be a right triangle with acute $\angle A$. The tangent of $\angle A$ (written as $\tan \bar{A}$) is defined as follows:
$\tan A=\frac{\text { length of leg opposite } \angle A}{\text { length of leg adjacent to } \angle A}=\frac{B C}{A C}$

$$
\tan A=\frac{\text { opposite }}{\text { adjacent }} \frac{5}{8}
$$

Find Tan of an Angle

Find $\tan \mathrm{J}$ and $\tan \mathrm{K}$. Round to four decimal places.

$$
\begin{aligned}
\tan J= & \frac{24}{32} \\
& 0.75 \\
\tan K= & \frac{32}{24}
\end{aligned}
$$

$$
1.3333
$$

Find Side Lengths Using Tan
Find the value of x.

$$
\begin{gathered}
13 \cdot(\tan 56)=\frac{x}{13} \cdot 18 \\
x=13 \cdot \tan 56 \\
x=19.3
\end{gathered}
$$

$$
\begin{aligned}
& \tan 61=\frac{22}{x} \\
& \frac{x(\tan 61)}{\tan 61}=\frac{22}{\tan 61} \\
& x=\frac{22}{\tan 61} \\
& x=12.2
\end{aligned}
$$

Find Area and Perimeter Using Tan
Found the area of the triangle. Round to the nearest tenth.
 \tan

$$
40=\frac{11}{x}
$$

$$
A=\frac{b h}{2}
$$

$$
A=\frac{11.13 .1}{} \quad x=\frac{11}{\tan 40}
$$

$$
A=72.1 \mathrm{~m}^{2}
$$

Found the perimeter of the triangle. Round to the nearest tenth.
 \tan

$$
\begin{aligned}
& (64.2)^{2}+(6.2)^{2}=y^{2}= \\
& 4(21.64+3844
\end{aligned}
$$

$$
4121.64+3844=y^{2}
$$

$$
y^{2}=7965.64
$$

$$
\begin{aligned}
& 44=\frac{62}{x} \\
& x=\frac{62}{\tan 44} \\
& x=64.2 \\
& 62+64.2+89.3 \\
& P=215.5 \mathrm{ft}
\end{aligned}
$$

$$
y=89.3
$$

Special Right Triangles

For acute $\angle \mathrm{A}$ of a right triangle, find tan A by using the 45-45-90 triangle theorem or the 30-60-90 triangle theorem.
$m \angle A=30^{\circ}$
$\tan A=\frac{*}{x \sqrt{3}}$ $\tan A=1 \cdot \sqrt{3}$
$m \angle A=45^{\circ}$

Homework Assignment

Worksheet 7.5B

