Bellwork 01/12/2012

Find the value of the variable.

$$
\left.\begin{array}{rl}
\frac{10}{a} & =\frac{a}{b} \\
a^{2} & =60 \\
\Lambda 15 \\
415
\end{array}\right)
$$

2.

$$
\begin{aligned}
\frac{9}{x} & =\frac{x}{5} \\
x^{2} & =45 \\
x & =3 \sqrt{5}
\end{aligned}
$$

Geometry
 7.4 Special Right Triangles Standard(s): 3

Vocabulary:

THEOREM
 For Your Notebook

THEOREM $7.8 \mathbf{4 5}^{\circ}-\mathbf{4 5}^{\circ}-\mathbf{9 0}^{\circ}$ Triangle Theorem
In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the hypotenuse is $\sqrt{2}$ times as long as each leg.
hypotenuse $=\operatorname{leg} \cdot \sqrt{2}$
Proof: Ex. 30, p. 463

THEOREM

For Your Notebook

THEOREM $7.9 \mathbf{3 0}^{\circ} \mathbf{- 6 0} \mathbf{0}^{\circ}-\mathbf{9 0}^{\circ}$ Triangle Theorem

In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg, and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$
\text { hypotenuse }=2 \cdot \text { shorter leg }
$$

longer leg $=$ shorter leg $\cdot \sqrt{3}$
Proof: Ex. 32, p. 463

Use Special Right Δ 's to Find Info
Complete the table.

$$
\begin{gathered}
45-45-90 \\
h=l \sqrt{2} \\
\frac{10}{\sqrt{2}}=l \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
\frac{10}{\sqrt{2}} \cdot \sqrt{2} \\
\frac{\sqrt{2}}{2} \\
\frac{10 \sqrt{2}}{2} \\
30-60-90 \\
h=l_{s} \cdot 2 \\
l_{l}=l_{5} \sqrt{3} \\
.8 \sqrt{3}=l_{s} \cdot \sqrt{3} \\
\sqrt{3}
\end{gathered}
$$


```
                |
```

Determine the Type of Special Δ
The side lengths of a triangle are given. Determine whether it is 45-45-90, 30-60-90, or neither. the smallest \#!

Homework Assignment

Worksheet 7.4B

