Bellwork 01/05/2012

1. Find the length of the hypotenuse of the right triangle.

$$x^{2} = 15^{2} + 30^{2}$$
 $x^{2} = 15^{2} + 30^{2}$
 $x^{3} = 325 + 900$
 $1x^{3} = 1125$
 $x = 15\sqrt{5} \approx 33.5$

2. Find the area of the isosceles triangle.

Note: you need to find h first!

$$51 = 24 + h^{2}$$
 $51 = 24 + h^{2}$
 $51 = 2025$
 $h = 45$

$$A = \frac{bh}{a}$$

$$A = \frac{45.48}{a}$$

$$A = 1080 \text{ cm}^{2}$$

Lesson 7.2

Geometry

7.2 Use the Converse of the Pythagorean Theorem Standard(s): 3, 8

Vocabulary:

CONCEPT SUMMARY

For Your Notebook

January 04, 2012

Methods for Classifying a Triangle by Angles Using its Side Lengths

(RIGHT)

Theorem 7.2

If $c^2 = a^2 + b^2$, then $m \angle C = 90^{\circ}$ and $\triangle ABC$ is a right triangle.

(ACUTE) Theorem 7.3

If $c^2 \leq a^2 + b^2$, then $m \angle C < 90^{\circ}$ and $\triangle ABC$ is an acute triangle.

(OBTUSE) Theorem 7.4

If $c^2 > a^2 + b^2$, then $m \angle C > 90^{\circ}$ and $\triangle ABC$ is an obtuse triangle.

Lesson 7.2 January 04, 2012

Classifying a Triangle

Decide whether the numbers can represent a triangle. If so, classify the triangle as acute, obtuse, or right.

10, 11, 14
$$\sqrt{es}$$

11, 14 \sqrt{es}

14 \sqrt{es}

196 \sqrt{es}

196 \sqrt{es}

196 \sqrt{es}

196 \sqrt{es}

10, 15, \sqrt{es}

10, 15, \sqrt{es}

10, \sqrt{es}

325 \sqrt{es}

325 \sqrt{es}

325 \sqrt{es}

Right!

15, 20, 36

No!

Lesson 7.2 January 04, 2012

Using Diagrams

Complete the statement with <, >, or =, if possible. If it is not possible, explain why.

$$m_{\angle}A \geq m_{\angle}D$$

Use Coordinates with the Converse

Determine if $\triangle ABC$ is a right, acute, or obtuse triangle.

$$AB = \frac{6-7}{4+(43)} = \frac{-1}{7}$$

$$BC = \frac{3-7}{0+(13)} = \frac{-4}{3}$$

Right

A(2, 4), B(4, 1), C(7, 1)

$$AB = \frac{1-4}{4-2} = \frac{-3}{2}$$

$$BC = \frac{1-1}{7-4} = \frac{9}{3} = 0$$

$$AC = \frac{1-4}{7-2} = \frac{-3}{5}$$

$$BC = 3$$
 $AC = \sqrt{34} \% 5.8$
 $(\sqrt{34})^2 3 + (\sqrt{13})^2$

$$34 9+13$$

 $34 > 22$
Obtuse

Lesson 7.2 January 04, 2012

Homework Assignment Worksheet 7.2B

