Bellwork
 12/12/2011

Find the value of the variable.
1.

$$
\begin{aligned}
\frac{x}{6}=\frac{20}{10} & 10 x
\end{aligned}=120
$$

2.

$$
\begin{array}{cl}
\frac{x}{18}=\frac{12}{16} \quad 16 x=216 \\
x=13.5
\end{array}
$$

Geometry

6.7 Perform Similarity Transformations Standard(s): 3,10

Vocabulary:

1. Dilation: A transformation that stretches or shrinks a figure to create a similar figure.
2. Center of Dilation: A fixed point in which the figure is enlarged or reduced.
3. Scale Factor of a Dilation: The ratio of a side length of the image to the corresponding side length of the original figure.

KEY CONCEPT

For Your Notebook

Coordinate Notation for a Dilation
You can describe a dilation with respect to the origin with the notation $(x, y) \rightarrow(k x, k y)$, where k is the scale factor.

If $0<k<1$, the dilation is a reduction. If $k>1$, the dilation is an enlargement.

Draw a Dilation with a Scale Factor Greater than 1

Draw a dilation of quadrilateral $A B C D$ with vertices $A(2,2), B(4,2), C$ $(4,0), \mathrm{D}(0,-2)$. Use a scale factor of 1.5 and label the image FGHJ.
$k=1.5$
$F(3,3)$
$G(6,3)$
$H(6,0)$
$J(0,-3)$

Determine the Type of Dilation
Determine whether the dilation from Figure A to Figure B is areduction or an enlargement. Then, find the values of the variables.

$$
\begin{gathered}
\frac{3}{12}=\frac{1}{4} \text { or } 0.25 \\
\frac{1}{4}=\frac{m}{8} \quad \begin{array}{rr}
4 m & =8 \\
m & =2 \\
\frac{1}{4} & =\frac{n}{6} \\
4 n & =6 \\
n & =1 \frac{1}{2}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{5}{2} \quad \text { Enlargement } \\
& \frac{5}{2}=\frac{7.5}{x} \quad 5 x=15 \\
& \frac{5}{2}=\frac{5}{y} \quad 5 y=10 \\
& \frac{y}{y} \\
& \frac{5}{2}=\frac{7.5}{z} \quad \begin{aligned}
& 5 z \\
= & =15 \\
z & =3
\end{aligned}
\end{aligned}
$$

Find a Scale Factor

You are using a photo quality printer to enlarge a digital picture. The picture on the computer screen is $6 \mathrm{~cm} \times 6 \mathrm{~cm}$. The printed image is $15 \mathrm{~cm} \times 15 \mathrm{~cm}$. What is the scale factor of the enlargment?

$$
\frac{15}{6}=\frac{5}{2} \mathrm{~cm}
$$

Finding Coordinates Using a Scale Factor

Find the coordinates of L, M, and N so that $\Delta L M N$ is a dilation of $\triangle P Q R$ with a scale factor of k. Sketch $\triangle P Q R$ and $\triangle L M N$.
A. $\mathbf{P}(5,-5), \mathrm{Q}(10,-5), \mathrm{R}(10,5) ; k=0.4$
$L(2,-2)$
$M(4,-2)$
$N(4,2)$

Homework Assignment

Worksheet 6.7B

