# Pop Quiz. <br> Get out a scrap sheet of paper. 

Matching! Match the correct description with each definition.

1. Point of concurrency of the medians of a $\Delta$.
A. Median
2. Point of concurrency of
B. Orthocenter the altitudes of a $\Delta$.
3. A segment from the vertex to the midpoint of the opposite side.
C. Altitude
D. Centroid
4. $A \perp$ segment from the vertex to the opposite side.

## Pop Quiz. <br> Get out a scrap sheet of paper.

Matching! Match the correct description with each definition.

1. Point of concurrency of the medians of a $\Delta$.
A. Altitude
2. Point of concurrency of
B. Median the altitudes of a $\Delta$.
C. Centroid
3. A segment from the vertex to the midpoint of the opposite
D. Orthocenter side.
4. $A \perp$ segment from the vertex
to the opposite side.

## Bellwork 11/18/2011

For problems 1 and 2, list the sides or angles in order from least to greatest.
1.

2.


## Geometry <br> 5.6 Inequalities in Two Triangles and Indirect Proof Standard(s): 7

## Vocabulary:

1. Indirect Proof (proof by contradiction):
1) Assume temporarily what you want to prove is false.
2) Reason logically until you reach a contradiction.
3) Point out that the desired conclusion must be true because the contradiction proves the temporary assumption false.

## THEOREMS <br> For Your Notebook

Theorem 5.13 Hinge Theorem
If two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first is larger than the included angle of the second, then the third side of the first is longer than the third side of the second.

Proof: Ex. 28, p. 341

$w X>S T$

Theorem 5.14 Converse of the Hinge Theorem
If two sides of one triangle are congruent to two sides of another triangle, and the third side of the first is longer than the third side of the second, then the included angle of the first is larger than the included angle of the second.


Proof: Example 4, p. 338

## Complete a Statement Using Hinge Thm.

Complete the statement with >, <, or =.


Use the Hinge Theorem Algebraically
Use the Hinge Theorem or its converse and properties of triangles to write and solve an inequality to describe a restriction on the value of $x$.



Starting an Indirect Proof

Write a temporary assumption you could make to prove the conclusion indirectly.

In $\triangle M N O$, if $\bar{M}$ is perpendicular to $\overline{\mathrm{NO}}$, then $\overline{\mathrm{MP}}$ is an altitude.
given: $\overline{M P \perp} \overline{N O}$
prove: $\overline{M P}$ is an altitude.
Assume... temporarily $\overline{M P}$ is not an
altitude

Indirect Proof
Write an indirect proof.
Given: $\angle A B C \neq \angle D B C$
Prove: $B C \not \subset A D$
Temporarily assume $\overrightarrow{B C} \mathcal{\perp} \stackrel{\overrightarrow{A D} .}{ }{ }^{B}$ If $\overrightarrow{0}$ $\overline{B C} \perp \overline{A D}$, then $\angle A B C+\angle D B C$ are night X's $^{\prime}$ by the def. of 1 lines. Then, $\angle A B C \cong \angle O B C$ by the right $x \cong$ thm. But, we're given that $\angle A B C \neq \angle D B C$. So, $\overline{B C} \not \perp \overline{A D}$.

Homework Assignment

## Worksheet 5.6B

