Bellwork 11/07/2011

Use the figure below the problems.

1. If $U V=13$, find $R T$.
$R T=26$
2. If $S T=20$, find $U W$.

$$
U W=10
$$

3. If the perimeter of $\triangle R S T=68 \mathrm{in}$., find the perimeter of Δ WW.
4. If $\mathrm{VW}=2 \mathrm{x}-4$ and $\mathrm{RS}=3 \mathrm{x}-3$, what is VW ?

$$
\begin{gathered}
2(2 x-4)=3 x-3 \\
4 x-8=3 x-3 \\
x=5 \\
2(5)-4 \\
W W=6
\end{gathered}
$$

Geometry
5.2 Use Perpendicular Bisectors
Standard(s): 3,6

Vocabulary:

1. Perpendicular Bisector: A segment, ray, line, or plane that is perpendicular to a segment at its midpoint.
2. Equidistant: When a point, between two figures, is the same distance to each figure.
3. Concurrent: When three or more lines, rays, or segments intersect in the same point.
4. Point of Concurrency: The point of intersection of the lines, rays, or segments.
5. Circumcenter: The point of concurrency of the three perpendicular bisectors of a triangle.

CIRCUMCENTER The point of concurrency of the three perpendicular bisectors of a triangle is called the circumcenter of the triangle. The circumcenter P is equidistant from the three vertices, so P is the center of a circle that passes through all three vertices.

Acute triangle
P 15 Inside trangle

Right triangle
P Is on triangle.

Obtuse triangle
PIs outside triangle

As shown above, the location of P depends on the type of triangle. The circle| with the center P is said to be circumscribed about the triangle.
THEOREMS
THEOREM 5.2 Perpendicular Bisector Theorem Notebook
In a plane, if a point is on the perpendicular
bisector of a segment, then it is equidistant from
the endpoints of the segment.
If $\overleftrightarrow{C P}$ is the \perp bisector of $\overline{A B}$, then $C A=C B$.
Proof: Ex. 26, p. 308

Proof: Ex. 26, p. 308
Theorem 5.3 Converse of the Perpendicular Bisector Theorem
In a plane, if a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment. If $D A=D B$, then D lies on the \perp bisector of $\overline{A B}$ Proof: Ex. 27, p. 308

Theorem 5.4 Concurrency of Perpendicular Blsectors of a Trlangle
The perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of the triangle
If $P D, P E$, and $P F$ are perpendicular bisectors,
then $P A=P B=P C$.
Proof: p. 933

Perpendicular Bisector

Has to...

1. $\mathrm{Be} \perp$ to a segment
2. Cut the segment into $2 \cong$ pieces

Has...

1. A point on it that is equidistant from the endpoints of the segment

Circumcenter

Has to...

1. Be a point of intersection of all $3 \perp$ bisectors

Is..

1. Equidistant from the vertices of the triangle

Use the Perpendicular Bisector Theorem
In the diagram, $\overleftrightarrow{R S}$ is the perpendicular bisector of $\overrightarrow{P Q}$. Find PR.

Find $A B$.

$6 x+11=11 x-9$
$11(4)-9$ 44-9 $A B=35$

Use the Concurrency of Perpendicular Bisectors
Tell whether the information in the diagram allows you to conclude that C is on the perpendicular bisector of $\overline{A B}$. Explain.

Use Perpendicular Bisectors

In the diagram, $\overparen{\mathrm{JN}}$ is the perpendicular bisector of $\overline{\mathrm{MK}}$.
Find NM. 35

Find JK. $7 y-6=5 y+8$

$$
43
$$

Find KL.

$$
\begin{aligned}
2 y & =14 \\
y & =7
\end{aligned}
$$

$$
9(7)-13
$$

50

Use Perpendicular Bisectors

In the diagram, the perpendicular bisectors of $\triangle M N P$ meet at point O and are shown dashed. Find the indicated measure.
Find MO. 26.8
Find PR. 26
Find MN. 40
Find SP.

Find QN. 20
Find MP. L L

Homework Assignment

Worksheet 5.2B

