Bellwork 10/25/2011

Tell which triangles you can show are congruent in order to prove $\overline{\mathrm{AE}} \cong \overline{\mathrm{DE}}$. What postulate or theorem would you use?
1.

$\triangle A E C \cong \triangle D E B$
AAS Thy.

Geometry

4.7 Use Isosceles and Equilateral Triangles Standards): 3,7

Vocabulary:

1. Legs: The two congruent sides of an isosceles triangle.
2. Vertex Angle: The angle formed by the legs.

3. Base Angles: The two angles adjacent to the base.

THEOREMS

For Your Notebook
Theorem 4.7 Base Angles Theorem
If two sides of a triangle are congruent, then the angles opposite them are congruent.
If $\overline{A B} \cong \overline{A C}$, then $\angle B \cong \angle C$.
Proof: p. 265

Theorem 4.8 Converse of Base Angles Theorem
If two angles of a triangle are congruent, then the sides opposite them are congruent.
If $\angle B \cong \angle C$, then $\overline{A B} \cong \overline{A C}$.
Proof: Ex. 45, p. 269

COROLLARIES

For Your Notebook

Corollary to the Base Angles Theorem
If a triangle is equilateral, then it is equiangular.
Corollary to the Converse of Base Angles Theorem
If a triangle is equiangular, then it is equilateral.

NOTE: If a Δ is equiangular, then the measure of each $X=60^{\circ}$

Lesson 4.7

Apply the Base Angles Theorem

Copy and complete the statement.

1. If $\overline{\mathbf{H G}} \cong \overline{\mathbf{H K}}$, then $\angle H G K \cong \angle H K G$.
2. If $\angle K H J \cong \angle K J H$, then $\overline{H K} \cong \overline{J K}$.

Worksheet 4.7B

