Pop Quiz.

Get out a scrap sheet of paper.

1. What is the definition of congruent triangles?
2. What is the SSS Postulate?
3. How might the reflexive property be useful in proving two triangles congruent?

Bellwork 10/18/2011

1. Given: $\overline{\mathrm{DF}}$ bisects $\overline{\mathrm{CE}}, \overline{\mathrm{DC}} \cong \overline{\mathrm{DE}}$ Prove: $\triangle C D F \cong \Delta E D F$

2. $\overline{\mathrm{DF}}$ bisects $\overline{\mathrm{CE}}$ $\overline{D C} \cong \overline{D E}$
3. $\overline{\mathrm{CF}} \cong \overline{\mathrm{EF}}$
4. $\overline{\mathrm{DF}} \cong \overline{\mathrm{DF}}$
5. $\triangle C D F \cong \triangle E D F$
6. Given
7. Def. of a segment bisector
8. Reflexive Property
9. SSS Postulate

Geometry

4.4 Prove Triangles Congruent by SAS and HL Standard(s): 3,7

Vocabulary:

1. Legs of a Right Triangle: The sides adjacent to the right angle.

2. Hypotenuse: The side opposite the right angle.

POSTULATE

For Your Notebook
Postulate 20 Side-Angle-Side (SAS) Congruence Postulate
If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.
If Side $\overline{R S} \cong \overline{U V}$,
Angle $\angle R \cong \angle U$, and Side $\overline{R T} \cong \overline{U W}$,

then $\triangle R S T \cong \triangle U V W$.

THEOREM

For Your Notebook

THEOREM 4.5 Hypotenuse-Leg (HL) Congruence Theorem
If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent.

Proofs: Ex. 37, p. 439; p. 932

How to Prove Δ 's \cong :

1. Def. of $\cong \Delta$'s
2. SSS Postulate
3. SAS Postulate
4. HL Theorem

Naming Included Angles

Use the diagram to name the included angle between the given pair of sides.

$$
\begin{aligned}
& \overline{\mathrm{GH}} \& \overline{\mathrm{HI}} \angle G I \\
& \overline{\mathrm{HI}} \& \overline{\mathrm{IG}} \angle H \mathrm{IG} \\
& \overline{\mathrm{IG}} \& \overline{\mathrm{HG}} \angle I G H \\
& \overline{\mathrm{GI}} \& \overline{\mathrm{~J}} \angle G I J
\end{aligned}
$$

Applying HL or SAS

Decide whether enough information is given to prove that triangles are congruent using SAS or HL.

N/a

N / a

Missing Congruence for Congruent Δ 's

State the third congruence that must be given to prove that $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ using the indicated postulate or theorem.

Given: $\angle B \cong \angle E, \overline{B C} \cong \overline{E F}, \quad B A \cong E D \quad$ (SAS)

Given: $\overline{\mathbf{A B}} \cong \overline{\mathbf{D E}}, \overline{\mathrm{BC}} \cong \overline{\mathrm{EF}}, \underline{\mathrm{CA}} \cong \mathrm{FD} \quad$ (SSS)

Given: $\overline{\mathbf{A C}} \cong \overline{\mathrm{DF}}, \angle \mathbf{A}$ is a right angle and $\angle \mathbf{A} \cong \angle \mathbf{D}$,
$B C \cong E F \quad(H L)$

Use the HL Congruence Theorem

Given: $\overline{\mathbf{Y W}} \perp \overline{\mathbf{X Z}}, \overline{\mathrm{XY}} \cong \overline{\mathbf{Y Y}}$
Prove: $\Delta \mathbf{X Y W} \cong \Delta \mathbf{Z Y W}$

1. $Y W \perp X Z, X Y \cong Z Y$
2. $\angle Y W Z$ is a right \angle $\angle \mathrm{YWX}$ is a right \angle
3. $\mathrm{YW} \cong \mathrm{\equiv}=\mathrm{YW}$
4. $\triangle X Y W \cong \triangle Z Y W$
5. Given
6. Def. of \perp lines

7. Reflexive Property
8. HL Theorem

Homework Assignment

Worksheet 4.4B

