Pop Quiz. Place everything under your desk except a pencil.
1. Through any two points there exists
2. If two planes intersect, then their intersection is a
3. A line contains
 If two points lie in a plane, then the lies in the plane.
 If two lines intersect, then their intersection is
6. Through any three noncollinear points there exists
7. A plane contains

Bellwork 09/14/2011

1. Decide whether the statement "Two planes can intersect in exactly one point R" is true or false. If false, give a reason.

Geometry 2.5 Reason Using Properties from Algebra Standard(s): 7

Vocabulary:

- 1. Equation: Two expressions separated by an equal sign.
- 2. To Solve an Equation: Using the algebraic properties to isolate a variable.

KEY CONCEPT	For Your Notebook
Algebraic Properties	of Equality
Let a, b, and c be real nu	mbers.
Addition Property	If $a = b$, then $a + c = b + c$.
Subtraction Property	If $a = b$, then $a - c = b - c$.
Multiplication Property	If $a = b$, then $ac = bc$.
Division Property	If $a = b$ and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$.
Substitution Property	If $a = b$, then a can be substituted for b in any equation or expression.

THEOREMS	For Your Notebook
THEOREM 2.1	Congruence of Segments
Segment congr	uence is reflexive, symmetric, and transitive.
Reflexive	For any segment AB , $\overline{AB} \cong \overline{AB}$.
Symmetric	If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.
Transitive	If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$.
Proofs: p. 137; H	Ex. 5, p. 121; Ex. 26, p. 118
THEOREM 2.2	Congruence of Angles
Angle congrue	nce is reflexive, symmetric, and transitive.
Reflexive	For any angle A , $\angle A \cong \angle A$.
Symmetric	If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.
Transitive	If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.
Proofs: Ex. 25, 1	p. 118; Concept Summary, p. 114; Ex. 21, p. 137

For Your Notebook

Distributive Property

KEY CONCEPT

a(b + c) = ab + ac, where a, b, and c are real numbers.

KEY CONCEPT	For Your Notebook
Reflexive Proper	ty of Equality
Real Numbers	For any real number $a, a = a$.
Segment Length	For any segment AB , $AB = AB$.
Angle Measure	For any angle A , $m \angle A = m \angle A$.
Symmetric Prope	erty of Equality
Real Numbers	For any real numbers a and b , if $a = b$, then $b = a$.
Segment Length	For any segments AB and CD , if $AB = CD$, then $CD = AB$.
Angle Measure	For any angles <i>A</i> and <i>B</i> , if $m \angle A = m \angle B$, then $m \angle B = m \angle A$.
Transitive Prope	rty of Equality
Real Numbers	For any real numbers a , b , and c , if $a = b$ and $b = c$, then $a = c$.
Segment Length	For any segments <i>AB</i> , <i>CD</i> , and <i>EF</i> , if $AB = CD$ and $CD = EF$, then $AB = EF$.
Angle Measure	For any angles <i>A</i> , <i>B</i> , and <i>C</i> , if $m \angle A = m \angle B$ and $m \angle B = m \angle C$, then $m \angle A = m \angle C$.

Write Reasons for Each Step

Solve 3x+8=-4x-34. Write a reason for each step. Given 3x+8= -4x-34 3x + 8 + 4x = -4x - 34 + 4xAdd. Prop. of= 7x+8=-34 Simplify Subtraction prop. 7x+8-8=-34-8 7x=-42 Simplify 7x = -42 Division Prop. of = Simplify X = -0Solve 14x+3(7-x)=-1. Write a reason for each step. Given 14x+3(7-x)=-1Distributive Prop. $|Y_{x+2}| - 3x = -1$ Simplify Subtraction Prop. of= 11x+21=-1 11x+21-21=-1-21 ||X = -22Simplify $\frac{11}{11} = -\frac{22}{11}$ Division Prop. of = Simplify $\chi = -2$

Use Properties

Substitution Property of Equality: If a = 20, then 5a = .2. 5(20) = 100Symmetric Property of Equality: If AB = CD, then CD = .2. ABAddition Property of Equality: If RS = TU, then RS + 20 = .2. TU + 20Multiplication Property of Equality: If $m_{\perp}1 = m_{\perp}2$, then $3m_{\perp}1 = .2$. $3m_{\perp}2$ Reflexive Property of Equality: If x is a real number, then x = .2. XTransitive Property of Equality: If $m_{\perp}E = m_{\perp}F$ and $m_{\perp}F = m_{\perp}G$, then .2. $m_{\perp}E=m_{\perp}G$





