Bellwork
04/19/12

1. Find the length of a $60^{\circ}$ arc in a circle with radius 8 m .

$$
\begin{aligned}
\Omega & =\frac{60}{360} \cdot \frac{16 \pi}{1} \quad \begin{aligned}
C & =2 r \pi \\
& =2(8) \pi \\
& =\frac{96 \phi \pi}{36 \phi} \\
& =\frac{8 \pi}{3} \approx 8.38 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

## Geometry <br> 11.5 Areas of Circles and Sectors Standard(s): 4

## Vocabulary:

Sector of a Circle: The region bounded by two radii of the circle and their intercepted arc.

## THEOREM

For Your Notebook

## Theorem 11.9 Area of a Circle

The area of a circle is $\pi$ times the square of the radius.

Justification: Ex. 43, p. 761; Ex. 3, p. 769


$$
A=\pi r^{2}
$$

## THEOREM

For Your Notebook

## Theorem 11.10 Area of a Sector

The ratio of the area of a sector of a circle to the area of the whole circle $\left(\pi r^{2}\right)$ is equal to the ratio of the measure of the intercepted arc to $360^{\circ}$.
$\frac{\text { Area of sector } A P B}{\pi r^{2}}=\frac{m \overparen{A B}}{360^{\circ}}$, or Area of sector $A P B=\frac{m \overparen{A B}}{360^{\circ}} \cdot \pi r^{2}$


## Area of Circles

Find the exact area of the circle. Then find the area to the nearest hundredth.

$d=18$
$r=9$

Find Area of Sectors
Find the area of the sector created by $\angle A C B$.

$$
\begin{aligned}
& \frac{360}{3}=120^{\circ} \\
& A . S=\frac{120}{360} \cdot \frac{576 \pi}{1} \\
& A . S=\frac{6912 \phi \pi}{36 \phi} \\
& A . S=192 \pi \mathrm{ft}^{2} . \\
& A . S=603.19 \mathrm{ft}^{2} . \\
& A=r^{2} . \\
& A=24^{2} \pi \\
& A=576 \pi
\end{aligned}
$$

## Find Measures

Find the indicated measure.

1. The area of a circle is $106 \mathbf{c m}^{2}$. Find the diameter.

$$
\begin{aligned}
& A=\pi r^{2} \\
& \frac{106}{\pi}=\frac{\pi r^{2}}{\pi} \\
& \sqrt{r^{2}}=\sqrt{\frac{106}{\pi}}
\end{aligned}
$$

$$
\begin{aligned}
& r=\sqrt{\frac{106}{\pi}} \\
& d=2 \sqrt{\frac{106}{\pi}}
\end{aligned}
$$

2. Find the area of a circle S .

$360-78=282^{\circ}$
$20.89=\frac{282}{360} \cdot A$
$\frac{360}{282} \cdot \frac{20.89}{1}=A$

$$
A=26.67 \mathrm{ft}^{2}
$$

Area of Shaded Regions
Find the area of the shaded region.


$$
\begin{aligned}
& A=16 \\
& A=1 \\
& A=3 \\
& d= \\
& r=
\end{aligned}
$$

$$
\frac{16}{\sqrt{2}}=8 \sqrt{2}
$$

$$
\begin{aligned}
& r=8 \\
& A_{1}=8^{2} \pi \\
& A_{1}=64 \pi \\
& A_{2}=(8 \sqrt{2})^{2} \mathrm{ft}^{2} \\
& A=128 \\
& A=64 \pi-128 \mathrm{ft} \\
& A=73.06 \mathrm{ft}^{2}
\end{aligned}
$$

## Homework Assignment

Pg. 758-759
\#11-31

