Bellwort
 04/17/12

1. Use Figure I~Figure II to find the ratio of the sides.

Then find the unknown area.

$$
\begin{array}{r}
24: 18 \\
R 5 \rightarrow 4: 3 \quad R A \rightarrow 16: 9 \\
\frac{16}{9}=\frac{60}{x} \\
16 x=540 \\
x=33.75 \mathrm{ft}^{2}
\end{array}
$$

Geometry

11.4 Circumference and Arc Length

 Standard(s): 4, 6
Vocabulary:

Arc Length: A portion of the circumference of a circle.
Note: the measure of the arc (in degrees) can be used to find the length (in units).

Circumference: The distance around a circle.
Note: We no longer use 3.14 as Pi. You will use the π button on your calculator.

THEOREM

For Your Notebook

THEOREM 11.8 Circumference of a Circle

The circumference C of a circle is $C=\pi d$ or $C=2 \pi r$, where d is the diameter of the circle and r is the radius of the circle.

Justification: Ex. 2, p. 769

$C=\pi d=2 \pi r$

COROLLARY

For Your Notebook

Arc Length Corollary

In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360°.

$\frac{\text { Arc length of } \overparen{A B}}{2 \pi r}=\frac{m \overparen{A B}}{360^{\circ}}$, or Arc length of $\overparen{A B}=\frac{m \overparen{A B}}{360^{\circ}} \cdot 2 \pi r$

Find Indicated Measures
Find the indicated measure.

1. Circumference of a circle with radius 15 in.

$$
C=2 r \pi
$$

$$
\begin{aligned}
& C=2 r \pi \\
& C=2(15) \pi \\
& C=30 \pi \\
& C=94.2 \mathrm{in} .
\end{aligned}
$$

2. Radius of a circle with circumference 36 ft .

$$
C=2 r \pi
$$

$$
\begin{aligned}
& \frac{36}{2 \pi}=\frac{2 r \pi}{2 \pi} \\
& r=\frac{36}{2 \pi} \\
& r=\frac{18}{\pi} \\
& r=5.7 \mathrm{ft.}
\end{aligned}
$$

Find Arc Lengths
Find the length of $\operatorname{arc} \widehat{\mathrm{AB}}$.

$C=2 r_{\pi}$
$C=2(9) \pi$
$C=18 \pi$
$\overparen{A B}=\frac{45}{360} \cdot \frac{18 \pi}{1}$
$\overparen{A B}=\frac{81 \phi \pi}{36 \phi}$
$A B=\frac{9 \pi}{4} \mathrm{in}$.
$\widehat{A B}=7.1 \mathrm{in}$.

$$
\begin{aligned}
& C=2(15) \pi \\
& C=30 \pi \\
& \overparen{A B}=\frac{45}{360} \frac{30 \pi}{1} \\
& \overparen{A B}=\frac{1350 \pi}{360} \\
& \overparen{A B}=\frac{15 \pi}{4} \\
& \overparen{A B}=11.8 \mathrm{in} .
\end{aligned}
$$

Use Central Angles
In circle $\mathrm{D}, \angle \mathrm{ADC} \cong \angle \mathrm{BDC}$. Find the indicated measure.

$m \overparen{C B}$ 160°
$m \widetilde{A B C}$

Use Arc Lengths
Find the indicated measure.

Radius of circle G

$$
\begin{aligned}
& \text { Length }=\frac{m^{\circ}}{360} \cdot 2 \pi r \\
& 10.5=\frac{150}{360} \cdot \frac{2 \pi r}{1} \\
& \frac{360}{300 \pi} \cdot 10.5=\frac{30 \pi}{360} \cdot r \cdot \frac{36 \phi}{300 \pi} \\
& r
\end{aligned}
$$

Homework Assignment

$$
\begin{gathered}
\text { Pg. 749-750 } \\
\text { \#3-23, not \#14 }
\end{gathered}
$$

