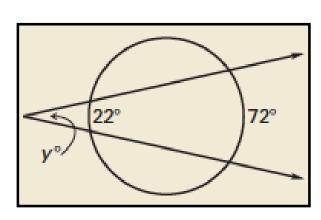

Bellwork 03/22/2012

Find the value of x and y.


1.

$$X = \frac{1}{2}(36+68)$$

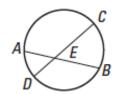
$$X = 52$$

2.

$$y = \frac{1}{2}(72 - 22)$$

 $y = \frac{1}{2}(50)$
 $y = 25$

Geometry 10.6 Find Segment Lengths in Circles Standard(s): 2, 4


Vocabulary:

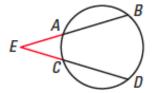
THEOREM

For Your Notebook

THEOREM 10.14 Segments of Chords Theorem

If two chords intersect in the interior of a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord.

 $EA \cdot EB = EC \cdot ED$


Proof: Ex. 21, p. 694

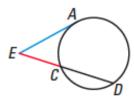
THEOREM

For Your Notebook

THEOREM 10.15 Segments of Secants Theorem

If two secant segments share the same endpoint outside a circle, then the product of the lengths of one secant segment and its external segment equals the product of the lengths of the other secant segment and its external segment.

 $EA \cdot EB = EC \cdot ED$

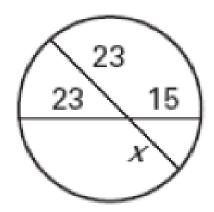

Proof: Ex. 25, p. 694

THEOREM

For Your Notebook

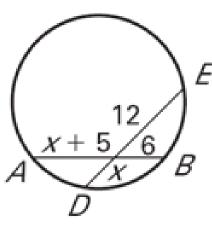
THEOREM 10.16 Segments of Secants and Tangents Theorem

If a secant segment and a tangent segment share an endpoint outside a circle, then the product of the lengths of the secant segment and its external segment equals the square of the length of the tangent segment.



 $EA^2 = EC \cdot ED$

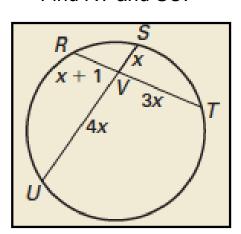
Proof: Ex. 26, p. 694


Segments of Chords

Find the value of x.

$$33 \cdot x = 33 \cdot 15$$

 $x = 15$


Find AB and DE.

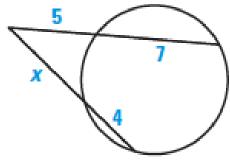
$$6(x+5)=12x$$

 $6x+30=12x$
 $6x=30$

$$AB = 5+5+6=16$$

 $DE = 5+12=17$


Find RT and SU.

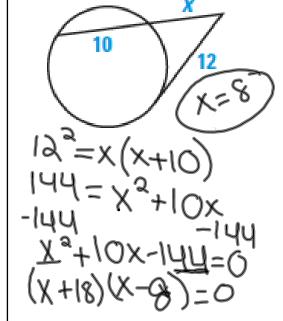

$$x(4x) = 3x(x+1)$$
 $4x^{2} = 3x^{2} + 3x$
 $x^{2} = \frac{3x}{x}$
 $x = 3$
 $x = 3$

Segments of Secants

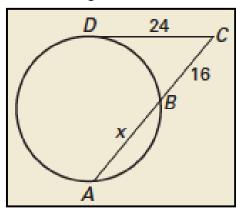
Find the value of x.

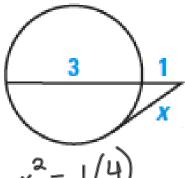
$$3(x+3) = a(1a)$$

 $3x+9=a4$
 $3x=15$
 $x=5$


$$5(12) = x(x+4)$$

 $60 = x^{2} + 4x$
 -60
 $x^{2} + 4x - 60 = 0$
 $(x + 10)(x - 6) = 0$
 $x = 6$

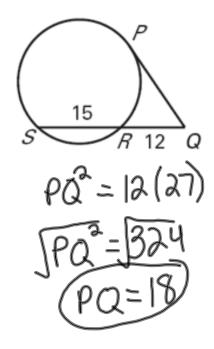

Find RT and TV.


$$8(x+11)=10(x+7)$$

 $8x+88=10x+70$
 $2x=18$
 $x=9$

Segments of Secants and Tangents

Find the value of x.



$$x^{2} = 1(4)$$
 $5x^{2} = 54$
 $5x^{2} = 34$

Find the length of *PQ*.

Homework Assignment Worksheet 10.6B

March 22, 2012

Lesson 10.6