Bellwork
 03/20/2012

Find the value of x in circle C.
1.

$3 x=5 x-12$
$\frac{-2 x}{-2}=\frac{-12}{-2}$

$$
x=6
$$

2.

$4 x+2=18$

Geometry

10.4 Inscribed Angles and Polygons Standard(s): 3, 6

Vocabulary:

THEOREM

For Your Notebook
Theorem 10.7 Measure of an Inscribed Angle Theorem
The measure of an inscribed angle is one half the measure of its intercepted arc.

Proof: Exs. 31-33, p. 678
$m \angle A D B=\frac{1}{2} m \overparen{A B}$
THEOREM
For Your Notebook

THEOREM 10.8

If two inscribed angles of a circle intercept the same arc, then the angles are congruent.

Proof: Ex. 34, p. 678

THEOREM

For Your Notebook

THEOREM 10.9

If a right triangle is inscribed in a circle, then the hypotenuse is a diameter of the circle.
Conversely, if one side of an inscribed triangle is a diameter of the circle, then the triangle is a right triangle and the angle opposite the diameter is the right angle.

$m \angle A B C=90^{\circ}$ if and only if $\overline{A C}$ is a diameter of the circle.

Proof: Ex. 35, p. 678

THEOREM

For Your Notebook

THEOREM 10.10

A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.
D, E, F, and G lie on $\odot C$ if and only if
$m \angle D+m \angle F=m \angle E+m \angle G=180^{\circ}$.

Proof: Ex. 30, p. 678; p. 938

$$
\begin{aligned}
& m \angle 0+m \angle F=180^{\circ} \\
& m \angle E+m \angle G=180^{\circ}
\end{aligned}
$$

Inscribed $Y=$
An $\not \&$ whose vertex is on a circle σ whose sides contain chords of the circle.

Inscribed Angles \& Intercepted Arcs

$m<A$

$m \overparen{B C}$

Use Theorem 10.9

Find the indicated measure in circle M. $\boldsymbol{m} \angle \mathbf{P N O} 34^{\circ} \quad \boldsymbol{m P Q} 62^{\circ}$ m \angle QMP 62° mQON 242°

Inscribed Polygon
Find the values of the variables.

$108+104=212$

$183 \div 2$
$x=91.5^{\circ}$

Two Inscribed Angles

Name two pairs of congruent angles.

Homework Assignment

Worksheet 10.4B

