Bellwork 03/20/2012

Find the value of x in circle C.

1.

$$-\frac{3}{3}x = -13$$

2.

$$4x+2=18$$
 $4x=16$
 $x=4$

Geometry

10.4 Inscribed Angles and Polygons Standard(s): 3, 6

Vocabulary:

THEOREM

For Your Notebook

THEOREM 10.7 Measure of an Inscribed Angle Theorem

The measure of an inscribed angle is one half the measure of its intercepted arc.

Proof: Exs. 31–33, p. 678

$$m \angle ADB = \frac{1}{2} m \widehat{AB}$$

THEOREM

For Your Notebook

THEOREM 10.8

If two inscribed angles of a circle intercept the same arc, then the angles are congruent.

Proof: Ex. 34, p. 678

 $\angle ADB \cong \angle ACB$

THEOREM

For Your Notebook

THEOREM 10.9

If a right triangle is inscribed in a circle, then the hypotenuse is a diameter of the circle. Conversely, if one side of an inscribed triangle is a diameter of the circle, then the triangle is a right triangle and the angle opposite the diameter is the right angle.

 $m \angle ABC = 90^{\circ}$ if and only if \overline{AC} is a diameter of the circle.

Proof: Ex. 35, p. 678

THEOREM

For Your Notebook

THEOREM 10.10

A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.

D, *E*, *F*, and *G* lie on \bigcirc *C* if and only if $m \angle D + m \angle F = m \angle E + m \angle G = 180^{\circ}$.

Proof: Ex. 30, p. 678; p. 938

mL0+mLF=180° mLE+mLG=180°

Inscribed X = An X whose vertex is on a circle & whose sides Contain chards of the circle.

Use Theorem 10.9

Find the indicated measure in circle M.

Inscribed Polygon

Find the values of the variables.

Two Inscribed Angles

Name two pairs of congruent angles.

Homework Assignment Worksheet 10.4B

March 20, 2012

Lesson 10.4