\qquad

LESSON 9.5
Practice B
For use with pages 607-615
The endpoints of $\overline{C D}$ are $C(1,2)$ and $D(5,4)$. Graph the image of $\overline{C D}$ after the glide reflection.

1. Translation: $(x, y) \rightarrow(x-4, y)$

Reflection: in the x-axis

2. Translation: $(x, y) \rightarrow(x, y+2)$
Reflection: in $y=x$

The vertices of $\triangle A B C$ are $A(3,1), B(1,5)$, and $C(5,3)$. Graph the image of $\triangle A B C$ after a composition of the transformations in the order they are listed
3. Translation: $(x, y) \rightarrow(x+3, y-5)$
4. Translation: $(x, y) \rightarrow(x-6, y+1)$

Reflection: in the y-axis

									y
								1	
-							-1	x	

Reflection: 90° about the origin

Graph $\overline{\boldsymbol{F " G}^{\prime \prime}}$ after a composition of the transformations in the order they are listed. Then perform the transformations in reverse order. Does the order affect the final image $F^{\prime \prime} G^{\prime \prime}$?
5. $F(4,-4), G(1,-2)$

Rotation: 90° about the origin
Reflection: in the y-axis

6. $F(-1,-3), G(-4,-2)$

Reflection: in the line $x=1$
Translation: $(x, y) \rightarrow(x+2, y+10)$

Describe the composition of transformations.

7.

8.

In the diagram, $k \| m, \overline{A B}$ is reflected in line k, and $\overline{A^{\prime} B^{\prime}}$ is reflected in line m.
9. A translation maps $\overline{A B}$ onto which segment?
10. Which lines are perpendicular to $\overline{B B^{\prime \prime}}$?
11. Name two segments parallel to $\overline{A A^{\prime \prime}}$.
12. If the distance between A : and m is 2.7 centimeters, what is the length of $\overline{A A^{\prime \prime}}$?

13. Is the distance from A^{\prime} to m the same as the distance from $A^{\prime \prime}$ to m ? Explain.

Find the angle of rotation that maps A onto $A^{\prime \prime}$.
14.

15.

